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Abstract — We introduce our approach to the calculation of 

the growing 3D carbon nanostructures from graphene 

nanoribbons.  

Our computer simulations face performance and efficiency 

issues so we make efforts to make our simulation method 

faster. Density Functional based Tight-Binding (DFTB) 

Molecular Dynamics (MD) simulations were performed in 

hybrid multi CPU - multi GPU environment. 

Using these self-developed IT tools we get closer to 

understanding self-organized growing of nanotubes which can 

be the basic bricks of nano-sized electric circuits in the near 

future. 

 

Keywords — GPU and hybrid computing, parallel 

simulation techniques, molecular dynamics simulation, carbon 

nanotube, graphene, Density Functional Tight Binding method 

I. INTRODUCTION 

lthough the outstanding electric properties of carbon 

nanotubes has already been shown is several research 

[1], the actual use is still just a dream because mass 

production is still not available [2-4] due to the lack of well 

controlled reliable construction technology. To increase 

stability and decrease the effect of free bonds on the edges two 

nanoribbons worth to be used to construct tubular nanotubes. 

[8,12]. Nanotubes are the basic bricks of nano-sized electric 

circuits and can be constructed in several ways [5-7]. It was 

demonstrated that graphene patterns with atomic accuracy can 

develop in a self organizing way to the predetermined 

fullerenes or nanotubes [5, 9-11]. Until mass production 

initiates, the best way of research is doing computer 

simulations to explore possibilities of using nanotubes. 

Molecular dynamics simulations can predict topological 

and energetical conditions [13] to be used in future mass 

production for growing defects-free nanotubes and their 

junctions [14-15] which can be the base elements of 

nanonetworks. For these calculations there is a demand for 

high-performance computing as we calculate with quite large 

carbon structures and a lot of experimentations in topology are 

needed to find appropriate shape graphene nanoribbons. Due 
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to high computing demand we cannot use serial code any 

more, turning to parallel computing is a must. Although 

development patterns exist for the preparation of serial and 

parallel molecular dynamics computations, no general tool 

exists to do whole process of molecular dynamics simulations 

in every field. 

II. THE ALGORITHM 

The method we used is based on our previous models but 

has some improvements which ensure more accuracy and 

helps our model approaching reality. We used molecular 

dynamics approach to describe position and movement of 

atoms. In these calculations all interactions between atom 

pairs are calculated which means N2 force calculations in each 

simulation step (N is the number of atoms) if we would use 

the classical calculations. In addition, the full description of 

the structure needs 6N parameter (3N position coordinates and 

3N speed vector coordinates) 

Our model has to capture the typical behavior of the 

nanostructures but at the same time our model should be as 

simple as possible to be computationally efficient. If we must 

choose between physical accuracy and speed of execution, we 

always choose an accurate representation of reality even if we 

face performance issues with larger models. 

In our simulations it was required to use the maximum level 

of detail so each atom was represented as an individual 

particle in the model.  

In the beginning of each simulation cycle there is a need to 

know neighborhood situation between atoms. In our model we 

used direct summation method where distances between all 

atom pairs are computed and only for those are stored in the 

neighbor matrix where the computed distance is less than a 

predefined rm is. Distance matrix is a triangular matrix as 

dij = dji for any atom i and j. Distance between two atoms can 

be computed as 

 

𝑑𝑖𝑗 =  √(𝑅𝑖𝑥 − 𝑅𝑗𝑥)2 + (𝑅𝑖𝑦 − 𝑅𝑗𝑦)2 + (𝑅𝑖𝑧 − 𝑅𝑗𝑧)2 (1) 

 

where Rix, Riy and Riz are the coordinates of atom Ri. 

Neighborhood of two given atom is computed from 

interatomic distances: 

 

bij = {
1, 𝑖𝑓 𝑑𝑖𝑗 < 𝑟𝑚

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 
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Neighbor matrix stores all the indices of neighbors of atom i 

in its row i: 

 

N = [
𝑔11 𝑔12  …  0

⋮
𝑔𝑛1 𝑔𝑛2  …  0

] (3) 

 

where gij is the number of jth neighbor of atom i. Remaining 

matrix elements are set to 0: Nij = 0 if j is greater than the 

number of neighbors of atom i. 

This method ensures that unnecessarily small forces have 

also not been taken into account. Direct summation has 

quadratic runtime simplicity, but still is one of the most 

efficient algorithms because it is very simple and easy to 

parallelize. 

The interatomic interaction was calculated with the help of 

Density Functional Tight Binding method [16]. Tight Binding 

is a method to calculate the electronic band structure of a 

crystal. Density functional theory is a theory of electronic 

structure involving the electron density as basic unknown 

instead of electronic wave function. This theory is of primary 

importance especially in constructing nanostructures because 

it decreases calculation demands of MD algorithms. 

In the mathematical model energy can be described as 

follows: 

 

𝐸 = ∑
𝑃𝑘

2

2𝑀𝑘
+ Ebond + Erep

𝑁
𝑘=1  (4) 

 

Ebond = ∑ n𝑖  𝜀𝑖𝑖  (5) 

 

where ni is 0, 1 or 2. The Kohn-Sham orbitals 𝜓𝑖of the system 

are described in terms of atom-centered localized basis 

functions 𝜙𝑣 [18]. The orbitals are as follows: 

 

𝜓𝑖(r) = ∑ 𝐶𝑣𝑖𝜙𝑣(r − Rk𝑣
)𝑚

𝑣  (6) 

 

𝜙𝑣 (r-Rν ) is the basis function around the atom in position 

Rν, m is the number of basis functions in position Rk, 

1 ≤ k ≤ N where N is number of atoms. Rv equals to one of Rk 

vectors. 

Eigenvalues and eigenvectors are described with: 

 
∑ 𝐶𝑣𝑖(𝐻𝜇𝑣 − 𝜀𝑖𝑆𝜇𝑣) = 0𝑚

𝑣=1  (7) 

 
on any μ and i, where 

 
H𝜇𝑣 = 〈Φ𝜇  |H| Φ𝑣〉 (8) 

 
and 
 
S𝜇𝑣 = ⟨Φ𝜇|Φ𝑣⟩ (9) 

 
Diagonal matrix elements Hμν and Sμν  can be computed by 

Slater-Koster parameter functions Hspσ(R), Hppσ(R), Hssσ(R), 

Hppπ(R), Sspσ(R), Sppσ(R), Sssσ(R), Sppπ(R). Carbon atoms have 

orbitals s, px , py and pz. The functions can be described with 

Chebyshev polinomials [18]. Matrix elements are as follows 

[19]: 

 
Hss (Rj − Ri) = Hssσ (Rij) (10) 

 

Hsx (Rj − Ri) = cos(αx) Hspσ(Rij) (11) 

 

Hxx (Rj − Ri) =  

  cos2(αx) Hppσ(Rij) + (1 − cos2(αx )) Hppπ(Rij) (12) 

 

Hxy (Rj − Ri) =  

  cos(αx) cos(αy ) Hppσ(Rij) –  

  cos(αx) cos(αy ) Hppπ(Rij) (13) 

 

Hxz (Rj − Ri) =  

  cos(αx) cos(αz ) Hppσ(Rij) –  

  cos(αx) cos(αz ) Hppπ(Rij) (14) 

 

In our model, parameter functions Hspσ(R), Hppσ(R), Hssσ(R), 

Hppπ(R), Sspσ(R), Sppσ(R), Sssσ(R), Sppπ(R) are implemented as 

two dimensional matrices. Sizes of matrices are proportional 

to the number of atoms in the model. We also need to store the 

derivatives of these parameter functions. The so-called 

overlapping matrix elements are as follows: 

 

Sss (Rj − Ri) = Sssσ(Rij) (15) 

 

Ssx (Rj − Ri) = cos (αx) Sspσ(Rij) (16) 

 

Sxx (Rj − Ri) =  

  cos2(αx) Sppσ (Rij) + (1 − cos2(αx)) Sppπ(Rij) (17) 

 

Sxy (Rj − Ri) =  

  cos(αx) cos(αy) Sppσ(Rij) –  

  cos(αx) cos(αy) Sppπ(Rij) (18) 

 

Sxz (Rj − Ri) =  

  cos(αx) cos(αz) Sppσ(Rij ) –  

  cos(αx) cos(αz) Sppπ(Rij) (19) 

 
for basis functions on different atoms. If two basis functions 

refer to same atoms, Sss = Sxx = Syy = Szz = 1, if μ=ν and 

Sμν = 0 (μ≠ν). 
Erep repulsive potential is also computed with Chebyshev 

polinomials [18]. 

Constant temperature granted by Nosé-Hoover (NH) 

thermostat [16-18, 21, 22]. Atomic force Fk
NH acting on the 

atom in position Rk is computed using Hellmann-Feynman 

theorem: 

 

Fk
NH =  ∑ ∑ ni (CiμCiν [

∂Hμν

∂𝐑𝐤
− εi

∂Sμν

∂𝐑𝐤
]) −

∂Erep

∂𝐑𝐤
− ξPk

m
μ,νi  (20) 

 

𝜉 =
𝑓

𝑄
𝑘𝐵(𝑇 − 𝑇𝑒𝑛𝑣) (21) 
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where 𝜉 is coefficient of friction, kB is Boltzmann constant, Q 

is thermic inertia parameter, f is degree of freedom (f = 3), 

Tenv is environmental temperature. Kinetic temperature T can 

be written in the following form: 

 

𝑇 =  
1

3𝑁𝑘𝐵
∑

𝑃𝑘
2

2𝑀𝑘

𝑁
𝑘=1  (22) 

 
where Pk is the momentum of the atom number k and Mk its 

atomic weight. 
The nanoribbons were cut out from a graphene sheet of 

standardized interatomic distance r = 1.42 Å. The two 

nanoribbons are placed facing each other in parallel position. 

During the molecular dynamics calculation constant 

environmental temperature was provided [17-18]. 

Verlet algorithm [20] was used to calculate velocity: 

 

𝑉𝑘(𝑡) =
𝑅𝑘(𝑡+∆𝑡)−𝑅𝑘(𝑡−∆𝑡)

2∆𝑡
 (23) 

 

𝑃𝑘(𝑡) =  𝑀𝑘𝑉𝑘(𝑡) (24) 

 

𝑅𝑘(𝑡 + ∆𝑡) = 2𝑅𝑘(𝑡) − 𝑅𝑘(𝑡 − ∆𝑡) +
𝐹𝑘

𝑁𝐻(𝑡)

𝑀𝑘
∆𝑡2 (25) 

 

∆𝑡 is time step (∆t  =  0.7 fs), Rk is the position of the given 

atom, V is velocity, and Fk
NH is the force which act on atom in 

position Rk at the constant temperature granted by Nosé-

Hoover (NH) thermostat [17-18, 21-22]. The initial atomic 

displacements during the time steps were sorted randomly and 

they gave the initial velocities by appropriate scaling. In this 

scaling we supposed an initial kinetic temperature Tinit. This 

initial temperature was chosen from the range of 

Tinit  = 1000 K and 1100 K. As the formation of new bonds 

decreased the potential energy and increased the kinetic 

energy we had to keep the temperature constant. In a constant 

energy calculation the kinetic energy obtained by forming new 

bonds destroyed other bonds of the structure. It is evident that 

in the Nosé-Hoover thermostat there is an oscillation of the 

temperature but it cannot destroy the structure formation. In 

the following the temperature of the calculation will represent 

the temperature of the thermostat. If the constant temperature 

were realized with the help of random scaling of the kinetic 

energy we could not distinguish the temperature of the 

environment and the structure. 
 

 
Figure 1. Initial model can be placed between two blocks of graphite 

substrates. 
 

The graphene nanoribbons are placed between two blocks 

of graphite substrates as we can see on Figure 1. This 

improvement was inspired by possible production technology 

and aims to achieve better control of growing perfect 

nanotubes. Our models contain two parallel nanoribbons of dn 

distance. The distance of the model is dA from Substrate A and 

dB from Substrate B. Usually dA = dB = dn. The long-range Van 

der Waals interaction between the substrates and the ribbons is 

characterized by Lennard-Jones (LJ) term [23]. The LJ 

potential is as follows: 

 

































612

4
rr

U
LJ


  (26) 

 

Parameter r is the distance of the given model atom and the 

substrate atom. The parameters were calculated as 

 = 2.9845 Å and  = 0.002 eV. 

While creating the IT representation of the algorithm we 

studied the performance of the method and we found it 

strongly resource intensive. Large matrices are in use which 

can be the size of 1 GB in practical simulation parameters. 

The limiting behavior of the whole algorithm can be described 

with O(N2) to O(N3) which predicts long running times. 

To run parallelized the whole mathematical algorithm were 

disassembled into elementary pieces to find possibilities to 

change algorithm described in literature and found parts to run 

parallel. In our approach a hybrid HPC (High Performance 

Computer) machine is being used where we can use traditional 

processors (CPUs) and General Purpose Graphic Processing 

Units (GPGPUs). CPUs typically consists of 1 to 16 cores, 

GPUs consists one or two orders of magnitute more as can be 

seen on Figure 2. 

 

 
Figure 2. Initial model can be placed between two blocks of graphite 

substrates. 
 

CPUs can be used for really general purpose, as it is usual 

in traditional sequential programming. The few cores 

optimized for serial processing. GPGPUs, contrary to their 

names, cannot be used general, we can say they can do only a 

narrow slice of the whole job, but they can do that extremely 

fast [24]. GPUs, originally developed for rendering real-time 

effects in 3D engineering applications and computer games 

now are suitable for performing data-parallel scientific 

computations. GPUs has a massively parallel architecture 

consisting hundreds or thousands of smaller, lighter, simpler, 
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therefore more efficient cores designed for handling multiple 

tasks simultaneously. Input-output operations can be a 

bottleneck here as GPUs use own memory for their 

calculations so all data has to be transferred from to main 

memory of the computer to the memory of the GPU board. 

Implementing efficient algorithms on a GPU requires deep 

understanding of the hardware and in many cases we have got 

the feeling that GPUs are a large step back in time if we 

examine the software development process itself. Besides that, 

we can point out many tasks which cannot work efficient on a 

GPU. That is why is makes no sense to realize everything on 

the GPU, only move some well-defined parts of the code 

there. 

In our simulations a hybrid machine is used: a significant 

part of the code, including I/O, processing initial conditions 

and all the code parts where the running time is irrelevant can 

be processed on the CPUs. The most compute-intensive 

portions of the algorithm are sent to the GPUs. 

Methodology was worked out to utilize possibilities of 

different hardware and software resources. The code was 

rewritten in latest version of FORTRAN and OpenMP and 

PGI OpenACC is used to make the algorithm parallel [25-27]. 

These standards aim speed up software development while try 

to stay near the speed of MPI (Message Passing Interface) or 

CUDA (Compute Unified Device Architecture). OpenMP 

target shared memory systems where processors share the 

same main memory. In contrast, MPI target both distributed as 

well shared memory system. In our simulations we decided on 

aiming shared memory systems so MPI was not used. It is 

because if a problem fits into a single machine (to be 

considered as an SMP – Symmetric MultiProcessing machine) 

if performs better than a DMP (Distributed Memory Parallel) 

architecture where we should face into the effect of the 

network [28, 29]. In our case a cluster machine with more 

simulations running at the same time made casual 

experimentation possible. The code, which is running on a 

cluster of slightly different servers, is able to discover its 

environment and decides how much processors (processor 

cores) to use and if a GPU is found then parts of the code is 

placed to the NVIDIA GPGPU accelerator devices. The so-

called pragmas give suggestions and instructions to the 

FORTRAN compiler, for example: 

 

!$omp do  

  !$acc data copyin(a,b) copy(c) 

  !$acc kernels 

     (part of code to run parallelized) 

  !$acc end kernels 

  !$acc end data 

!$omp enddo 

 

Pragmas provide additional information to the compiler, 

beyond what is conveyed in the “host” programming language 

itself. They are written as a comment in the host language so 

they can be simply ignored when not compiled with special 

parallel compiler. This implicitly means that the code should 

be written in a way to be able to run serial. 

Verification and validation of the code can be justified with 

real-life simulations of molecular dynamic problems of carbon 

nanostructures. Depending on input data, overall system 

performance achieved a speedup of 70 which make larger 

studying structures than ever before (Table 1). Though, we 

still see many possibilities on optimize the code in the future, 

thus further speedup is expected. We face to a problem that 

GPUs have relatively small memory on board (eg. 3GB on 

Tesla 2050) so we have to fit all data there. There is a large 

overhead associated with data transfer between central CPU 

memory and GPU device on-board memory. Data transfer can 

completely destroy the speedup effect of the GPU. For 

considerable larger models our computation methodology 

should be supplemented with data segmentation of large 

model data. 

 

Hardware type Speedup 

Single CPU (1 core, serial) 

Intel Xeon E5-X5650 

1 

Multicore (12 threads) 

Intel Xeon E5-X5650 

4 

GPU (448 cores) 

Tesla 2050 

59 

GPU (512 cores) 

Tesla 2090 

70 

Table 1. Speedup on different hardware 

 

Special verification software was created to compare output 

of different versions of the algorithm during development 

phase. The results of the simulation must be independent from 

the hardware resources the simulation was running on. As all 

the simulations are computed with a large but limited 

precision, the results cannot be exactly the same but 

differences in results can be small enough: 

 

∆ 𝑅𝑖 <  𝜀  (27) 

 

where Ri  R is the ith value of result set R and  is a 

sufficiently small number. For verification, each atom 

coordinates of all simulation steps were computed using both 

our original serial code and the parallel code being verified. 

All the corresponding atom coordinates were compared and 

the simulation was accepted only if all the differences in 

coordinates were bellow 10-7 Å. 

In addition to verifying result data with software, another 

usual method of validation is visualizing data (an example can 

be seen in Figure 3). It is extremely important as the result set 

of each simulation is a large set of numbers which represent 

the state of the nanostructure in a given time step. Thousands 

of time steps are calculated for each simulation, of course. All 

of these represent too much information to interpret in mind 

and if all the states of simulation meet the previous 

expectations in visual we can be sure that the calculations are 

valid. 
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III. RESULTS 

An IT methodology was worked out which is suitable for 

designing the construction of carbon nanotubes and 

forecasting its properties as well as circumstances of their 

emergence. 

Based on the methodology, a serial Tight Binding 

Molecular Dynamics algorithm was implemented for a hybrid 

CPU-GPGPU HPC environment. As an important part of the 

methodology the algorithm was optimized and parallelized 

aiming better running speeds. Some parts of the algorithm 

achieved the speedup of 230 and other parts remained serial. A 

speedup of 70 reached for the algorithm as a whole. We were 

studying armchair and zigzag nanotubes, Y junctions and 

other 3D structures. We examined all the cases of different 

orientations and nanotube diameters to know, how the 

existence of the substrates influences the self-organized 

growing of nanotubes. The initial structure contained two 

parallel (coincident or similar size) graphene nanoribbons 

dn = 3.35 Å from each other. We also set the initial distance of 

the nanoribbons and the substrates the same value: 

dA = dB = 3.35 Å. We calculated the interatomic forces 

between the carbon atoms considering repulsive and attractive 

Van der Waals forces of the substrates. 

It was expected that larger models would show similar 

behavior so we started creating nanotubes due to diameter of 

critical size and above. Figure 3 shows such a large model. 

Figure 3.a shows initial model and Figure 3.b shows the 

developed structure after 2 ps. It can be seen easily that the 

structure fits compressed is the two substrates. Then we 

started to pull apart the two substrates so the structure reached 

its final shape as seen on Figure 3.c. For better understanding 

Figure 3.d shows initial and the flattened model between the 

substrates. Note that on the figure only one graphite layer can 

be seen instead of each block of graphite substrates. 

We made several experiments with different widths of 

nanoribbons. We can discover the tendency to form a 

graphene sheet. Even with using substrates self-organized 

growing of perfect nanotubes of small diameter under a certain 

size could not be done. 

In the case of zigzag nanotubes the critical curvature energy 

is less, the critical ribbon width is greater than the same value 

at the armchair nanotubes. These simulations were performed 

again with and without using substrates. The initial structure 

must be above a certain critical size depending on the 

existence of the substrates. Larger models are easier to 

construct. 

While we have defined critical widths of graphene 

nanoribbons for different lattice orientations we discovered 

not all the cases of simulations lead successfully built 

nanostructure. Thus, we examined the reproducibility of the 

full process of self-organized growing of 3D nanostructures. 

 

 
a. 

 

 
b. 

 
c. 

 
d. 

 
Figure 3. Simulation of carbon  nanotube. 

a. The initial model: two parallel nanoribbons 

b. The flattened shape model at 2 ps. (Flattening caused by the two 

substrates) 

c. The final shape of the model after the substrates were removed 

d. The initial and the flattened model between the substrates (For the 

sake of simplicity, one graphite layer of each substrate block is 

shown.) 

 

We recognized simulations started with the same 

parameters also can produce different outcome. The only 

difference is the random atomic movement of the atoms in the 

model which is set by pseudo-random numbers in the 

initialization phase of the simulation. Therefore we run several 

tests to analyze how our findings on critical width depend on 

random atomic movements. These tests should be done on 

each separate model but the results are similar in different 

cases. On Figure 4 statistics of a straight armchair nanotube is 

shown. We have found that using nanoribbons bellow critical 

width is also possible but with very low chances of success. 

Larger width provides high chances so using critical width is 

still an important quantitative data of carbon nanostructures 

which can be formed in future production. Our experiences 

with straight zigzag nanotubes are similar in tendency – but 

with higher ribbon widths. 
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Figure 4. Probability of perfect self-organising growth of AC carbon 

nanotubes depends on the width of the graphene nanoribbons. 
 

IV. CONCLUSION 

An IT methodology was worked out for designing the 

construction of carbon nanotubes from parallel graphene 

nanoribbon. The implementation, which based on previous 

models and utilizes theory of molecular dynamics takes into 

account all the physical details of atomic behavior (interacting 

forces, movements etc.) of the model. 

 The molecular dynamics code was rewritten using the latest 

parallel programming techniques available for CPUs and 

GPUs in order to increase performance. A high performance 

cluster of hybrid servers were used to run the simulations. 

These high performance computers only performs well when 

the code running on them are especially designed to utilize the 

hardware capabilities. We achieved a speedup of 70 in our 

methodology compared to our old serial algorithm running. 

With the advanced algorithm we achieved new results in the 

field of materials science. 

 From our molecular dynamics simulations we obtained the 

following conditions for straight nanotube formation from two 

parallel nanoribbons placed between two graphite substrate 

blocks: For armchair nanotubes the critical ribbon width is 

7.10 Å, for zigzag nanotubes is 13.53 Å. These numbers refer 

the case of using substrates in the simulations. Long range 

Van der Waals forces were also taken into consideration in 

computing acting forces. Both critical widths are significantly 

narrower than critical widths without using substrates.  

These experiences add lots of useful information but still 

not enough to describe self-organized building of Y junctions. 

Y shape graphene sheets in these initial models show high 

sensitivity in small changes of topology and positioning. 

Further circumstances of creating Y junctions are the subject 

of our further research. In case of Y junctions we need to do 

several systematic test simulations to find suitable conditions 

and parameters. 

As our IT implementation develops, we can move towards 

even larger 3D nano structures to study. 
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