



Abstract — We introduce our approach to the calculation of

the growing 3D carbon nanostructures from graphene

nanoribbons.

Our computer simulations face performance and efficiency

issues so we make efforts to make our simulation method

faster. Density Functional based Tight-Binding (DFTB)

Molecular Dynamics (MD) simulations were performed in

hybrid multi CPU - multi GPU environment.

Using these self-developed IT tools we get closer to

understanding self-organized growing of nanotubes which can

be the basic bricks of nano-sized electric circuits in the near

future.

Keywords — GPU and hybrid computing, parallel

simulation techniques, molecular dynamics simulation, carbon

nanotube, graphene, Density Functional Tight Binding method

I. INTRODUCTION

lthough the outstanding electric properties of carbon

nanotubes has already been shown is several research

[1], the actual use is still just a dream because mass

production is still not available [2-4] due to the lack of well

controlled reliable construction technology. To increase

stability and decrease the effect of free bonds on the edges two

nanoribbons worth to be used to construct tubular nanotubes.

[8,12]. Nanotubes are the basic bricks of nano-sized electric

circuits and can be constructed in several ways [5-7]. It was

demonstrated that graphene patterns with atomic accuracy can

develop in a self organizing way to the predetermined

fullerenes or nanotubes [5, 9-11]. Until mass production

initiates, the best way of research is doing computer

simulations to explore possibilities of using nanotubes.

Molecular dynamics simulations can predict topological

and energetical conditions [13] to be used in future mass

production for growing defects-free nanotubes and their

junctions [14-15] which can be the base elements of

nanonetworks. For these calculations there is a demand for

high-performance computing as we calculate with quite large

carbon structures and a lot of experimentations in topology are

needed to find appropriate shape graphene nanoribbons. Due

Dávid Fülep: Department of Mathematics and Computational Science,

Faculty of Technology Sciences, Széchenyi István University, H-9126 Győr,
Hungary (fulep@sze.hu)

István László: Department of Theoretical Physics, Institute of Physics,

Budapest University of Technology and Economics, H-1521 Budapest,
Hungary (laszlo@eik.bme.hu)

E-mail: fulep@sze.hu, laszlo@eik.bme.hu

to high computing demand we cannot use serial code any

more, turning to parallel computing is a must. Although

development patterns exist for the preparation of serial and

parallel molecular dynamics computations, no general tool

exists to do whole process of molecular dynamics simulations

in every field.

II. THE ALGORITHM

The method we used is based on our previous models but

has some improvements which ensure more accuracy and

helps our model approaching reality. We used molecular

dynamics approach to describe position and movement of

atoms. In these calculations all interactions between atom

pairs are calculated which means N2 force calculations in each

simulation step (N is the number of atoms) if we would use

the classical calculations. In addition, the full description of

the structure needs 6N parameter (3N position coordinates and

3N speed vector coordinates)

Our model has to capture the typical behavior of the

nanostructures but at the same time our model should be as

simple as possible to be computationally efficient. If we must

choose between physical accuracy and speed of execution, we

always choose an accurate representation of reality even if we

face performance issues with larger models.

In our simulations it was required to use the maximum level

of detail so each atom was represented as an individual

particle in the model.

In the beginning of each simulation cycle there is a need to

know neighborhood situation between atoms. In our model we

used direct summation method where distances between all

atom pairs are computed and only for those are stored in the

neighbor matrix where the computed distance is less than a

predefined rm is. Distance matrix is a triangular matrix as

dij = dji for any atom i and j. Distance between two atoms can

be computed as

𝑑𝑖𝑗 = √(𝑅𝑖𝑥 − 𝑅𝑗𝑥)2 + (𝑅𝑖𝑦 − 𝑅𝑗𝑦)2 + (𝑅𝑖𝑧 − 𝑅𝑗𝑧)2 (1)

where Rix, Riy and Riz are the coordinates of atom Ri.

Neighborhood of two given atom is computed from

interatomic distances:

bij = {
1, 𝑖𝑓 𝑑𝑖𝑗 < 𝑟𝑚

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

Parallel simulation methodological issues

for creating 3D nanostructures

D Fülep, I László

A

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 222

mailto:fulep@sze.hu

Neighbor matrix stores all the indices of neighbors of atom i

in its row i:

N = [
𝑔11 𝑔12 … 0

⋮
𝑔𝑛1 𝑔𝑛2 … 0

] (3)

where gij is the number of jth neighbor of atom i. Remaining

matrix elements are set to 0: Nij = 0 if j is greater than the

number of neighbors of atom i.

This method ensures that unnecessarily small forces have

also not been taken into account. Direct summation has

quadratic runtime simplicity, but still is one of the most

efficient algorithms because it is very simple and easy to

parallelize.

The interatomic interaction was calculated with the help of

Density Functional Tight Binding method [16]. Tight Binding

is a method to calculate the electronic band structure of a

crystal. Density functional theory is a theory of electronic

structure involving the electron density as basic unknown

instead of electronic wave function. This theory is of primary

importance especially in constructing nanostructures because

it decreases calculation demands of MD algorithms.

In the mathematical model energy can be described as

follows:

𝐸 = ∑
𝑃𝑘

2

2𝑀𝑘
+ Ebond + Erep

𝑁
𝑘=1 (4)

Ebond = ∑ n𝑖 𝜀𝑖𝑖 (5)

where ni is 0, 1 or 2. The Kohn-Sham orbitals 𝜓𝑖of the system

are described in terms of atom-centered localized basis

functions 𝜙𝑣 [18]. The orbitals are as follows:

𝜓𝑖(r) = ∑ 𝐶𝑣𝑖𝜙𝑣(r − Rk𝑣
)𝑚

𝑣 (6)

𝜙𝑣 (r-Rν) is the basis function around the atom in position

Rν, m is the number of basis functions in position Rk,

1 ≤ k ≤ N where N is number of atoms. Rv equals to one of Rk

vectors.

Eigenvalues and eigenvectors are described with:

∑ 𝐶𝑣𝑖(𝐻𝜇𝑣 − 𝜀𝑖𝑆𝜇𝑣) = 0𝑚

𝑣=1 (7)

on any μ and i, where

H𝜇𝑣 = 〈Φ𝜇 |H| Φ𝑣〉 (8)

and

S𝜇𝑣 = ⟨Φ𝜇|Φ𝑣⟩ (9)

Diagonal matrix elements Hμν and Sμν can be computed by

Slater-Koster parameter functions Hspσ(R), Hppσ(R), Hssσ(R),

Hppπ(R), Sspσ(R), Sppσ(R), Sssσ(R), Sppπ(R). Carbon atoms have

orbitals s, px , py and pz. The functions can be described with

Chebyshev polinomials [18]. Matrix elements are as follows

[19]:

Hss (Rj − Ri) = Hssσ (Rij) (10)

Hsx (Rj − Ri) = cos(αx) Hspσ(Rij) (11)

Hxx (Rj − Ri) =

 cos2(αx) Hppσ(Rij) + (1 − cos2(αx)) Hppπ(Rij) (12)

Hxy (Rj − Ri) =

 cos(αx) cos(αy) Hppσ(Rij) –

 cos(αx) cos(αy) Hppπ(Rij) (13)

Hxz (Rj − Ri) =

 cos(αx) cos(αz) Hppσ(Rij) –

 cos(αx) cos(αz) Hppπ(Rij) (14)

In our model, parameter functions Hspσ(R), Hppσ(R), Hssσ(R),

Hppπ(R), Sspσ(R), Sppσ(R), Sssσ(R), Sppπ(R) are implemented as

two dimensional matrices. Sizes of matrices are proportional

to the number of atoms in the model. We also need to store the

derivatives of these parameter functions. The so-called

overlapping matrix elements are as follows:

Sss (Rj − Ri) = Sssσ(Rij) (15)

Ssx (Rj − Ri) = cos (αx) Sspσ(Rij) (16)

Sxx (Rj − Ri) =

 cos2(αx) Sppσ (Rij) + (1 − cos2(αx)) Sppπ(Rij) (17)

Sxy (Rj − Ri) =

 cos(αx) cos(αy) Sppσ(Rij) –

 cos(αx) cos(αy) Sppπ(Rij) (18)

Sxz (Rj − Ri) =

 cos(αx) cos(αz) Sppσ(Rij) –

 cos(αx) cos(αz) Sppπ(Rij) (19)

for basis functions on different atoms. If two basis functions

refer to same atoms, Sss = Sxx = Syy = Szz = 1, if μ=ν and

Sμν = 0 (μ≠ν).
Erep repulsive potential is also computed with Chebyshev

polinomials [18].

Constant temperature granted by Nosé-Hoover (NH)

thermostat [16-18, 21, 22]. Atomic force Fk
NH acting on the

atom in position Rk is computed using Hellmann-Feynman

theorem:

Fk
NH = ∑ ∑ ni (CiμCiν [

∂Hμν

∂𝐑𝐤
− εi

∂Sμν

∂𝐑𝐤
]) −

∂Erep

∂𝐑𝐤
− ξPk

m
μ,νi (20)

𝜉 =
𝑓

𝑄
𝑘𝐵(𝑇 − 𝑇𝑒𝑛𝑣) (21)

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 223

where 𝜉 is coefficient of friction, kB is Boltzmann constant, Q

is thermic inertia parameter, f is degree of freedom (f = 3),

Tenv is environmental temperature. Kinetic temperature T can

be written in the following form:

𝑇 =
1

3𝑁𝑘𝐵
∑

𝑃𝑘
2

2𝑀𝑘

𝑁
𝑘=1 (22)

where Pk is the momentum of the atom number k and Mk its

atomic weight.
The nanoribbons were cut out from a graphene sheet of

standardized interatomic distance r = 1.42 Å. The two

nanoribbons are placed facing each other in parallel position.

During the molecular dynamics calculation constant

environmental temperature was provided [17-18].

Verlet algorithm [20] was used to calculate velocity:

𝑉𝑘(𝑡) =
𝑅𝑘(𝑡+∆𝑡)−𝑅𝑘(𝑡−∆𝑡)

2∆𝑡
 (23)

𝑃𝑘(𝑡) = 𝑀𝑘𝑉𝑘(𝑡) (24)

𝑅𝑘(𝑡 + ∆𝑡) = 2𝑅𝑘(𝑡) − 𝑅𝑘(𝑡 − ∆𝑡) +
𝐹𝑘

𝑁𝐻(𝑡)

𝑀𝑘
∆𝑡2 (25)

∆𝑡 is time step (∆t = 0.7 fs), Rk is the position of the given

atom, V is velocity, and Fk
NH is the force which act on atom in

position Rk at the constant temperature granted by Nosé-

Hoover (NH) thermostat [17-18, 21-22]. The initial atomic

displacements during the time steps were sorted randomly and

they gave the initial velocities by appropriate scaling. In this

scaling we supposed an initial kinetic temperature Tinit. This

initial temperature was chosen from the range of

Tinit = 1000 K and 1100 K. As the formation of new bonds

decreased the potential energy and increased the kinetic

energy we had to keep the temperature constant. In a constant

energy calculation the kinetic energy obtained by forming new

bonds destroyed other bonds of the structure. It is evident that

in the Nosé-Hoover thermostat there is an oscillation of the

temperature but it cannot destroy the structure formation. In

the following the temperature of the calculation will represent

the temperature of the thermostat. If the constant temperature

were realized with the help of random scaling of the kinetic

energy we could not distinguish the temperature of the

environment and the structure.

Figure 1. Initial model can be placed between two blocks of graphite

substrates.

The graphene nanoribbons are placed between two blocks

of graphite substrates as we can see on Figure 1. This

improvement was inspired by possible production technology

and aims to achieve better control of growing perfect

nanotubes. Our models contain two parallel nanoribbons of dn

distance. The distance of the model is dA from Substrate A and

dB from Substrate B. Usually dA = dB = dn. The long-range Van

der Waals interaction between the substrates and the ribbons is

characterized by Lennard-Jones (LJ) term [23]. The LJ

potential is as follows:

































612

4
rr

U
LJ


 (26)

Parameter r is the distance of the given model atom and the

substrate atom. The parameters were calculated as

 = 2.9845 Å and  = 0.002 eV.

While creating the IT representation of the algorithm we

studied the performance of the method and we found it

strongly resource intensive. Large matrices are in use which

can be the size of 1 GB in practical simulation parameters.

The limiting behavior of the whole algorithm can be described

with O(N2) to O(N3) which predicts long running times.

To run parallelized the whole mathematical algorithm were

disassembled into elementary pieces to find possibilities to

change algorithm described in literature and found parts to run

parallel. In our approach a hybrid HPC (High Performance

Computer) machine is being used where we can use traditional

processors (CPUs) and General Purpose Graphic Processing

Units (GPGPUs). CPUs typically consists of 1 to 16 cores,

GPUs consists one or two orders of magnitute more as can be

seen on Figure 2.

Figure 2. Initial model can be placed between two blocks of graphite

substrates.

CPUs can be used for really general purpose, as it is usual

in traditional sequential programming. The few cores

optimized for serial processing. GPGPUs, contrary to their

names, cannot be used general, we can say they can do only a

narrow slice of the whole job, but they can do that extremely

fast [24]. GPUs, originally developed for rendering real-time

effects in 3D engineering applications and computer games

now are suitable for performing data-parallel scientific

computations. GPUs has a massively parallel architecture

consisting hundreds or thousands of smaller, lighter, simpler,

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 224

therefore more efficient cores designed for handling multiple

tasks simultaneously. Input-output operations can be a

bottleneck here as GPUs use own memory for their

calculations so all data has to be transferred from to main

memory of the computer to the memory of the GPU board.

Implementing efficient algorithms on a GPU requires deep

understanding of the hardware and in many cases we have got

the feeling that GPUs are a large step back in time if we

examine the software development process itself. Besides that,

we can point out many tasks which cannot work efficient on a

GPU. That is why is makes no sense to realize everything on

the GPU, only move some well-defined parts of the code

there.

In our simulations a hybrid machine is used: a significant

part of the code, including I/O, processing initial conditions

and all the code parts where the running time is irrelevant can

be processed on the CPUs. The most compute-intensive

portions of the algorithm are sent to the GPUs.

Methodology was worked out to utilize possibilities of

different hardware and software resources. The code was

rewritten in latest version of FORTRAN and OpenMP and

PGI OpenACC is used to make the algorithm parallel [25-27].

These standards aim speed up software development while try

to stay near the speed of MPI (Message Passing Interface) or

CUDA (Compute Unified Device Architecture). OpenMP

target shared memory systems where processors share the

same main memory. In contrast, MPI target both distributed as

well shared memory system. In our simulations we decided on

aiming shared memory systems so MPI was not used. It is

because if a problem fits into a single machine (to be

considered as an SMP – Symmetric MultiProcessing machine)

if performs better than a DMP (Distributed Memory Parallel)

architecture where we should face into the effect of the

network [28, 29]. In our case a cluster machine with more

simulations running at the same time made casual

experimentation possible. The code, which is running on a

cluster of slightly different servers, is able to discover its

environment and decides how much processors (processor

cores) to use and if a GPU is found then parts of the code is

placed to the NVIDIA GPGPU accelerator devices. The so-

called pragmas give suggestions and instructions to the

FORTRAN compiler, for example:

!$omp do

 !$acc data copyin(a,b) copy(c)

 !$acc kernels

 (part of code to run parallelized)

 !$acc end kernels

 !$acc end data

!$omp enddo

Pragmas provide additional information to the compiler,

beyond what is conveyed in the “host” programming language

itself. They are written as a comment in the host language so

they can be simply ignored when not compiled with special

parallel compiler. This implicitly means that the code should

be written in a way to be able to run serial.

Verification and validation of the code can be justified with

real-life simulations of molecular dynamic problems of carbon

nanostructures. Depending on input data, overall system

performance achieved a speedup of 70 which make larger

studying structures than ever before (Table 1). Though, we

still see many possibilities on optimize the code in the future,

thus further speedup is expected. We face to a problem that

GPUs have relatively small memory on board (eg. 3GB on

Tesla 2050) so we have to fit all data there. There is a large

overhead associated with data transfer between central CPU

memory and GPU device on-board memory. Data transfer can

completely destroy the speedup effect of the GPU. For

considerable larger models our computation methodology

should be supplemented with data segmentation of large

model data.

Hardware type Speedup

Single CPU (1 core, serial)

Intel Xeon E5-X5650

1

Multicore (12 threads)

Intel Xeon E5-X5650

4

GPU (448 cores)

Tesla 2050

59

GPU (512 cores)

Tesla 2090

70

Table 1. Speedup on different hardware

Special verification software was created to compare output

of different versions of the algorithm during development

phase. The results of the simulation must be independent from

the hardware resources the simulation was running on. As all

the simulations are computed with a large but limited

precision, the results cannot be exactly the same but

differences in results can be small enough:

∆ 𝑅𝑖 < 𝜀 (27)

where Ri  R is the ith value of result set R and  is a

sufficiently small number. For verification, each atom

coordinates of all simulation steps were computed using both

our original serial code and the parallel code being verified.

All the corresponding atom coordinates were compared and

the simulation was accepted only if all the differences in

coordinates were bellow 10-7 Å.

In addition to verifying result data with software, another

usual method of validation is visualizing data (an example can

be seen in Figure 3). It is extremely important as the result set

of each simulation is a large set of numbers which represent

the state of the nanostructure in a given time step. Thousands

of time steps are calculated for each simulation, of course. All

of these represent too much information to interpret in mind

and if all the states of simulation meet the previous

expectations in visual we can be sure that the calculations are

valid.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 225

III. RESULTS

An IT methodology was worked out which is suitable for

designing the construction of carbon nanotubes and

forecasting its properties as well as circumstances of their

emergence.

Based on the methodology, a serial Tight Binding

Molecular Dynamics algorithm was implemented for a hybrid

CPU-GPGPU HPC environment. As an important part of the

methodology the algorithm was optimized and parallelized

aiming better running speeds. Some parts of the algorithm

achieved the speedup of 230 and other parts remained serial. A

speedup of 70 reached for the algorithm as a whole. We were

studying armchair and zigzag nanotubes, Y junctions and

other 3D structures. We examined all the cases of different

orientations and nanotube diameters to know, how the

existence of the substrates influences the self-organized

growing of nanotubes. The initial structure contained two

parallel (coincident or similar size) graphene nanoribbons

dn = 3.35 Å from each other. We also set the initial distance of

the nanoribbons and the substrates the same value:

dA = dB = 3.35 Å. We calculated the interatomic forces

between the carbon atoms considering repulsive and attractive

Van der Waals forces of the substrates.

It was expected that larger models would show similar

behavior so we started creating nanotubes due to diameter of

critical size and above. Figure 3 shows such a large model.

Figure 3.a shows initial model and Figure 3.b shows the

developed structure after 2 ps. It can be seen easily that the

structure fits compressed is the two substrates. Then we

started to pull apart the two substrates so the structure reached

its final shape as seen on Figure 3.c. For better understanding

Figure 3.d shows initial and the flattened model between the

substrates. Note that on the figure only one graphite layer can

be seen instead of each block of graphite substrates.

We made several experiments with different widths of

nanoribbons. We can discover the tendency to form a

graphene sheet. Even with using substrates self-organized

growing of perfect nanotubes of small diameter under a certain

size could not be done.

In the case of zigzag nanotubes the critical curvature energy

is less, the critical ribbon width is greater than the same value

at the armchair nanotubes. These simulations were performed

again with and without using substrates. The initial structure

must be above a certain critical size depending on the

existence of the substrates. Larger models are easier to

construct.

While we have defined critical widths of graphene

nanoribbons for different lattice orientations we discovered

not all the cases of simulations lead successfully built

nanostructure. Thus, we examined the reproducibility of the

full process of self-organized growing of 3D nanostructures.

a.

b.

c.

d.

Figure 3. Simulation of carbon nanotube.

a. The initial model: two parallel nanoribbons

b. The flattened shape model at 2 ps. (Flattening caused by the two

substrates)

c. The final shape of the model after the substrates were removed

d. The initial and the flattened model between the substrates (For the

sake of simplicity, one graphite layer of each substrate block is

shown.)

We recognized simulations started with the same

parameters also can produce different outcome. The only

difference is the random atomic movement of the atoms in the

model which is set by pseudo-random numbers in the

initialization phase of the simulation. Therefore we run several

tests to analyze how our findings on critical width depend on

random atomic movements. These tests should be done on

each separate model but the results are similar in different

cases. On Figure 4 statistics of a straight armchair nanotube is

shown. We have found that using nanoribbons bellow critical

width is also possible but with very low chances of success.

Larger width provides high chances so using critical width is

still an important quantitative data of carbon nanostructures

which can be formed in future production. Our experiences

with straight zigzag nanotubes are similar in tendency – but

with higher ribbon widths.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 226

Figure 4. Probability of perfect self-organising growth of AC carbon

nanotubes depends on the width of the graphene nanoribbons.

IV. CONCLUSION

An IT methodology was worked out for designing the

construction of carbon nanotubes from parallel graphene

nanoribbon. The implementation, which based on previous

models and utilizes theory of molecular dynamics takes into

account all the physical details of atomic behavior (interacting

forces, movements etc.) of the model.

 The molecular dynamics code was rewritten using the latest

parallel programming techniques available for CPUs and

GPUs in order to increase performance. A high performance

cluster of hybrid servers were used to run the simulations.

These high performance computers only performs well when

the code running on them are especially designed to utilize the

hardware capabilities. We achieved a speedup of 70 in our

methodology compared to our old serial algorithm running.

With the advanced algorithm we achieved new results in the

field of materials science.

 From our molecular dynamics simulations we obtained the

following conditions for straight nanotube formation from two

parallel nanoribbons placed between two graphite substrate

blocks: For armchair nanotubes the critical ribbon width is

7.10 Å, for zigzag nanotubes is 13.53 Å. These numbers refer

the case of using substrates in the simulations. Long range

Van der Waals forces were also taken into consideration in

computing acting forces. Both critical widths are significantly

narrower than critical widths without using substrates.

These experiences add lots of useful information but still

not enough to describe self-organized building of Y junctions.

Y shape graphene sheets in these initial models show high

sensitivity in small changes of topology and positioning.

Further circumstances of creating Y junctions are the subject

of our further research. In case of Y junctions we need to do

several systematic test simulations to find suitable conditions

and parameters.

As our IT implementation develops, we can move towards

even larger 3D nano structures to study.

REFERENCES

[1] Avouris P 2002 “Molecular electronics with carbon nanotubes”

Accounts Chem. Res. 35 1026-1034

[2] Tans S J, Verschueren A R M, Dekker C 1998 “Room-temperature
transistor based on a single carbon nanotube” Nature 393 49-52

[3] Yao Z, Postma H W C, Balents L, Dekker C 1999 “Carbon nanotube

intramolecular junctions” Nature 402 273-276
[4] Keren K, Berman R S, Buchstab E, Sivan U, Braun E 2003 “DNA-

templated carbon nanotube field-effect transistor” Science 302 1380-

1382
[5] Fülep D, Zsoldos I, László I “Molecular dynamics simulations for

lithographic production of carbon nanotube structures from graphene”

2015 Mathematics in Computer Science and Engineering Series 42, pp
253-256

[6] Tapaszto L, Dobrik G, Lambin P, Biro L P 2008 “Tailoring the atomic

structure of graphene nanoribbons by scanning tunnelling microscope
lithography” Nature Nanotechnology 3 397-401

[7] Nemes-Incze P, Magda G, Kamarás K, Biró L P 2010

“Crystallographically selective nanopatterning of graphene on SiO2”
Nano Research 3 110-116

[8] Han S S, Lee K S, Lee H M 2004 “Nucleation mechanism of carbon

nanotube” Chemical Physics Letters 383 321-325
[9] László I, Zsoldos I 2012 “Graphene-based molecular dynamics

nanolithography of fullerenes, nanotubes and other carbon structures”

Europhysics Letters 99 63001

[10] László I, Zsoldos I 2012 “Molecular dynamics simulation of carbon

nanostructures: The C60 buckminsterfullerene” Phys. Status Solidi B

249 2616-2619

[11] László I, Zsoldos I 2014 “Molecular dynamics simulation of carbon

nanostructures: The D5h C70 fullerene” Physica E 56 427-430

[12] He L, Lu J Q, Jiang H 2009 “Controlled Carbon-Nanotube Junctions

Self-Assembled from Graphene Nanoribbons” Small 5 2802-2806
[13] D Fülep, I Zsoldos, I László: 2015 “Topological and energetic

conditions for lithographic production of carbon nanotubes from

graphene” Hindawi Publishing, Journal of Nanomaterials, Volume
2015, Article ID 379563 doi 10.1155 /2015/379563

[14] I Zsoldos: Planar trivalent polygonal networks constructed by carbon

nanotube Y-junctions, Journal of Geometry and Physics 61:(1) pp. 37-
45. (2011)

[15] I Zsoldos I, Gy Kakuk: New formation of carbon nanotube junctions,

Modelling and Simulation in Materials Science and Engineering 15: pp.
739-747. (2007)

[16] Allen M P, Tildesley D J 1996 “Computer Simulation of Liquids”

Clarendon Press, Oxford

[17] Frenkel D, Smit B 1996 “Understanding Molecular Simulation – From

Algoriths to Applications” Academic Press, San Diego

[18] Porezag D, Frauenheim T, Köhler T, Seifert G and Kaschner R 1995
“Construction of tight-binding-like potentials on the basis of density-

functional theory: Application to Carbon” Phys. Rev. B 51 12947-

12957
[19] J.C. Slater, G.F. Koster 1954 “Simplified LCAO Method for the

Periodic Potential Problem”, Phys Rev 94:1498–1524

[20] Verlet L, 1967 “Computer experiments on classical fluids. I.
Thermodynamical properties of Lennard-Jones molecules” Phys. Rev.

159 98-103

[21] Nosé S, 1984 “A molecular dynamics method for simulation in the
canonical ensemble” Mol. Phys. 52 255-268

[22] Hoover W G 1985 “Canonical dynamics: Equilibrium phase-space
distributions” Phys. Rev. A 31 1695-1697

[23] Xian-Hong Meng, Ming Li, Zhan Kang, Jian-Liang Xiao 2014

“Folding of multi-layer graphene sheets induced by van der Waals
interaction” Acta Mechanica Sinica 30(3): 410-417

[24] Parallel Programming and Computing Platform, NVIDIA Corporation,

2015. Available at https://developer.nvidia.com/cuda-zone

[25] The OpenMP Architecture Review Board, 2015. Available at

http://openmp.org/wp/

[26] OpenACC Directives for Accelerators, 2015. Available at
http://www.openacc.org/

[27] PGI Accelerator Programming Model, The Portland Group, 2015.

Available at https://www.pgroup.com/resources/docs.htm
[28] Moni Naor, Larry Stockmeyer 1995 “What can be computed locally”

SIAM Journal on Computing 24 (6) 1259-1277, doi:

10.1137/S0097539793254571
[29] Hagit Attiya, Jennifer Welch 2004 “Distributed computing:

fundamentals, simulations, and advanced topics” Hoboken, NJ Wiley

ISBN 0-471-45324-2

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 227

